“An algorithm is a series of steps or methodology to solve a problem.”
Algorithm Tutorials
TopCoder – Data Science Articles
TopCoder – Importance of Algorithms
Sorting Algorithms
Performance of common sorting algorithms:
Algorithm | Time Complexity | Space Complexity | ||
---|---|---|---|---|
Best | Average | Worst | Worst | |
Quicksort | Ω(n log(n)) |
Θ(n log(n)) |
O(n^2) |
O(log(n)) |
Mergesort | Ω(n log(n)) |
Θ(n log(n)) |
O(n log(n)) |
O(n) |
Timsort | Ω(n) |
Θ(n log(n)) |
O(n log(n)) |
O(n) |
Heapsort | Ω(n log(n)) |
Θ(n log(n)) |
O(n log(n)) |
O(1) |
Bubble Sort | Ω(n) |
Θ(n^2) |
O(n^2) |
O(1) |
Insertion Sort | Ω(n) |
Θ(n^2) |
O(n^2) |
O(1) |
Selection Sort | Ω(n^2) |
Θ(n^2) |
O(n^2) |
O(1) |
Tree Sort | Ω(n log(n)) |
Θ(n log(n)) |
O(n^2) |
O(n) |
Shell Sort | Ω(n log(n)) |
Θ(n(log(n))^2) |
O(n(log(n))^2) |
O(1) |
Bucket Sort | Ω(n+k) |
Θ(n+k) |
O(n^2) |
O(n) |
Radix Sort | Ω(nk) |
Θ(nk) |
O(nk) |
O(n+k) |
Counting Sort | Ω(n+k) |
Θ(n+k) |
O(n+k) |
O(k) |
Cubesort | Ω(n) |
Θ(n log(n)) |
O(n log(n)) |
O(n) |
Performance Chart from http://bigocheatsheet.com/
Searching
Depth First Search
“depth first search is well geared towards problems where we want to find any solution to the problem (not necessarily the shortest path), or to visit all of the nodes in the graph.” -TopCoder
Nodes to visit are stored in a stack.
Breadth First Search
Nodes to visit are stored in a queue
“The Breadth First search is an extremely useful searching technique. It differs from the depth-first search in that it uses a queue to perform the search, so the order in which the nodes are visited is quite different. It has the extremely useful property that if all of the edges in a graph are unweighted (or the same weight) then the first time a node is visited is the shortest path to that node from the source node” -TopCoder
Heap-Search (Dijkstra)
“allows you to write a Breadth First search, and instead of using a Queue you use a Priority Queue and define a sorting function on the nodes such that the node with the lowest cost is at the top of the Priority Queue. This allows us to find the best path through a graph in O(m * log(n)) time where n is the number of vertices and m is the number of edges in the graph.” -TopCoder
General-Purpose Algorithm Types
– Simple recursive algorithms. Ex: Searching an element in a list
– Backtracking algorithms Ex: Depth-first recursive search in a tree
– Divide and conquer algorithms. Ex: Quick sort and merge sort
– Dynamic programming algorithms. Ex: Generation of Fibonacci series
– Greedy algorithms Ex: Counting currency
– Branch and bound algorithms. Ex: Travelling salesman (visiting each city once and minimize the total distance travelled)
– Brute force algorithms. Ex: Finding the best path for a travelling salesman
– Randomized algorithms. Ex. Using a random number to choose a pivot in quick sort).
Brute force:- An extremity raw method that aims to finds variety of solutions and which ones the best.
Reduction:- Tries and converts the given problem to a simpler and a better known problem whose complexity is not dominated by the resulting reduced algorithm’s. Linear programmings, Graphs, random are the other types of algorithms.